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We express the density of states �DOS� near guided resonances of plasmonic waveguides by using multiple-
scattering theory. In direct analogy with the case of localized electronic defect states in condensed matter, we
demonstrate that optical DOS variations follow a lorentzian profile near guided modes resonances. The lorent-
zian shape gives quantitative information on the guided modes �effective index, propagation length, and
polarization state�. We numerically investigate both leaky and bound �lossy� modes supported by dielectric-
loaded surface-plasmon-polariton waveguides.
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I. INTRODUCTION

Optical integrated circuits are widely used since the 1960s
due to their high ability for data communications at small
cost. A widely used configuration consists of a strip of di-
electric material deposited on top of a planar waveguide.
This structure is called a strip-loaded waveguide. The dielec-
tric strip leads to a lateral mode confinement into the planar
waveguide.1 Since the mode does not overlap the loading
strip boundaries, scattering losses by the strip corners are
limited. Moreover, depending on the dielectric material
�polymer, semiconductor, nonlinear glass,…�, various optical
devices are achievable.1 In addition, metallic electrodes can
also be used as loading strip lines with useful applications
for designing electro-optical devices.1 Recently, the concept
of dielectric-loaded surface-plasmon-polariton waveguide
�DLSPPW� has been proposed. This configuration, com-
prised of a dielectric material strip deposited onto a metal
film, optimizes the opportunities of combining electrical and
optical properties.2–4 Very recently, we demonstrated loss
compensation in strongly confined DLSPPW, in direct anal-
ogy with integrated optical amplifier.5 To this purpose, the
dielectric load was made of a polymer strip doped with quan-
tum dots, and played the role of gain medium under optical
pumping. Other dielectric materials have to be developed to
manage all-optical integrated devices. In particular, ultrafast
photonic circuits can be achieved using nonlinear materials
such as chalcogenide glasses.6 These glasses have high-linear
indices so that chalcogenide-DLSPPW support bound
modes. However, these bound modes are not easily acces-
sible using, e.g., differential method which was recently
adapted to the DLSPPW configuration.7

Therefore, we develop here a mode solver based on
density-of-states formulation, available for two-dimensional
�2D� waveguides of arbitrary shape and nature. This formu-
lation is directly inspired by the study of localized electronic
defects and impurities in condensed matter. Indeed, the elec-
tronic density of states presents then a Breit-Wigner �lorent-
zian� form near scattering resonances, characterizing the
scattering channel involved in the process.8 We will profit
here of the strong analogy between light and electronic scat-
tering formalisms9,10 to fully characterize a guided mode
throughout the optical density of states associated to the
wave-guiding structure.

The paper is organized as follows. Section II will present
the theoretical framework. Numerical simulations are re-
ported in Sec. III for the example of a leaky mode already
extensively investigated in the literature. Finally, Sec. IV
considers bound modes supported by a high index material.

II. THEORETICAL BACKGROUND

The main idea of this paper is to work with the optical
density of states �DOS� of the wave-guiding structure. In this
first section, we briefly summarize DOS definition and prop-
erties, useful for characterizing integrated photonic
waveguides. Without loss of generality, we focus on the DL-
SPPW configuration, described in Fig. 1�a�. A dielectric load
locally modifies the optical index near a metallic film depos-
ited on a substrate. Such a configuration is well known to
support a surface-plasmon-polariton mode, laterally confined
at the metal/dielectric interface.2,3 Due to the translational
invariance along y axis, the wave-vector component ky is a
constant of the system that characterizes a guided mode. The
electromagnetic density of states ��ky ;�� is the density of
electromagnetic modes in the wave-vector interval �ky ,ky
+dky� at fixed frequency �. Since v=ky

2 is the eigenvalue of
the wave equation, it is easier to work with �̃�ky

2 ;��
= �2ky�−1��ky ;�� that is related to the wave equation kernel
�2D-Green’s dyad� G associated to the system by9,11,12

�̃�ky
2;�� = −

1

�
Im Tr��G�ky ;���

=
d

dv
� 1

�
Im ln�det �G�ky ;���� . �1�

This relation has to be manipulated with care since it holds
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FIG. 1. �Color online� �a� DLSPPW configuration. A dielectric
ridge �thickness t, width w, optical index ndiel= ��diel�1/2� is depos-
ited on a metal film of thickness d and optical index nmetal

= ��metal�1/2. The substrate index is nsub= ��sub�1/2. �b� Reference sys-
tem: substrate/metal/air slab. See text for details.
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only in the region where ��r� does not change sign so that
Sturm-Liouville theory applies.13 Since metallic film pos-
sesses a negative dielectric constant, it is convenient to re-
strict the domain of investigation on the dielectric strip only.
Moreover, the Dyson’s equation expresses the Green’s dyad
G of any arbitrary system as a function of the Green’s dyad
Gref of a reference system12

G = �I − GrefV�−1Gref , �2�

where V=k2��ref −�obj� represents the perturbation due to the
object �k=� /c�. In our case, we choose the substrate/metal/
air slab system described in Fig. 1�b� as the reference system,
so that V=k2�1−�diel� inside the dielectric strip and is null
elsewhere. Then, the variation in DOS due to the guiding
structure can be written as14

��̃�ky
2;�� = �̃�ky

2;�� − �̃ref�ky
2;��

= −
1

�

d

dv
Im ln�D�ky ;���, with �3�

D�ky ;�� = det�I − GrefV� . �4�

The presence of V in Eq. �4� indicates an implicit integration
over the perturbation surface. Applying then standard proce-
dure for multiple-scattering description, one can demonstrate
that the DOS variation has a lorentzian shape near a
resonance.8 For this purpose, we express DOS variations in
terms of the scattering phase shift ��ky ;��=−arg�D�ky ;���,

��̃�ky
2;�� =

1

�

d�

dv
. �5�

This expression is analogous to the electronic DOS deriva-
tion n�E�=dN�E� /dE with N�E� being the number of elec-
tronic modes at the energy E. Therefore, � /� can be seen as
the number of electromagnetic modes created in presence of
the guiding structure. Due to a change in Riemann sheet, �
varies of � around Re�D�ky0 ;����0. After a Taylor expan-
sion of Re�D�ky ;��� near v0=ky0

2 , we obtain, following a
procedure similar to that described in Ref. 8,

��̃�ky
2;�� �

g

�

�/2
�ky

2 − ky0
2 �2 + ��/2�2 , with

� = 2
Im D�ky ;��

�d Re D�ky ;��/dv�v0

, �6�

where g is the waveguide degeneracy at � and ky0
2 . Remem-

bering that v=ky
2, we can now express the DOS variation

���ky ;��=2ky��̃�ky
2 ;�� near a resonance,

���ky ;�� �
2gky0

�

�/2
�ky

2 − ky0
2 �2 + ��/2�2 , �7�

�
g

�

�ky/2
�ky − ky0�2 + ��ky/2�2 , with �ky =

�

2ky0
, �8�

where we use �ky
2−ky0

2 ��2ky0�ky −ky0� near ky0.15

To summarize, the variation in the density of states pre-
sents a lorentzian form near a guided wave-vector resonance

ky0, in exact analogy with the Breit-Wigner �lorentzian� pro-
file followed by the electronic density of states in presence of
a localized electronic defect. The optical resonance full
width at half maximum �FWHM� �ky gives the mode propa-
gation length LSPP=1 /�ky. Additionally, the number of sup-
ported mode is N���=�dky���ky ;��=g. Obviously, the den-
sity of created modes is maximum at the resonance and is
���ky0 ,��=2gLSPP /�. In case of DLSPPW configuration,
this simple relation shows that a mode can be supported if
and only if its propagation length is long enough since the
collective oscillation of electrons has to establish. Equiva-
lently, the DOS variations can be expressed as a function of
�.16 The maximum DOS difference expresses then
���ky0 ,�0�=2g	 / ��vg�, where 	 is the mode lifetime and
vg=�� /�ky is the mode group velocity. Again, this means
that the mode need sufficient time to establish �see also sec-
tion 9.4.1 of Ref. 17�.

Knowing the mode wave vector ky0 and propagation
length LSPP, the mode electric field is computed thanks to the
Green’s dyad as

E�r	,t� = E2D�r	�ei�ky0y−�t�e−y/LSPP, with �9�

E2D�r	� = G�r	,r	
0,ky0� · p − G0�r	,r	

0,ky0� · p , �10�

where r	 = �x ,z� represents the coordinates in the �XZ� plane
and p is a 2D dipoles line source, located at an arbitrary
place r	

0 near the waveguide, used to excite the mode.
G0�r	 ,r	

0 ,ky0� is the free-space Green’s dyad so that the sec-
ond term in the right-hand side of Eq. �10� removes the ex-
citation field and expression �10� gives the mode field only.

It is worth noting that we do not use expression �3� to
evaluate DOS difference since it leads to numerical instabili-
ties because of the difficulty to properly choose the Riemann
sheet where the scattering phase shift ��ky ,�� is defined.
Instead, we go back to the generic expression �1�. Practically,
DOS variation in presence of the waveguide is numerically
calculated by

���ky ;�� = −
2ky

�
Im
 dr	���r	�G�r	,r	,ky,��

− �ref�r	�Gref�r	,r	,ky,��� , �11�

Since we are interested in the waveguide modes, confined
inside the object, we can limit the integration to the object
only.12 Last, due to the vectorial nature of the electromag-
netic field, one interestingly defined partial DOS variations
as18,19

��i�ky ;�� = −
2ky

�
Im
 dr	���r	�Gii�r	,r	,ky,��

− �ref�r	�Gref ,ii�r	,r	,ky,���,�i = x,y,z� .

�12�

The Green’s dyad is numerically calculated as described in
Ref. 20.

III. LEAKY MODES

In this section, we demonstrate the reliability of our ap-
proach by considering leaky modes supported by a DL-
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SPPW. These modes have been already theoretically studied
using either effective index model,3 finite element numerical
simulations,3,4,21 or differential method7 and experimentally
investigated by both near-field22 and leakage radiation
microscopies.5,23

A. Single mode waveguide

1. Dispersion relation

The DLSPPW characteristics are optimized as indicated
in Ref. 3 for the telecom wavelength 
=2�c /�=1.55 �m.
The gold film is d=100 nm thick and the polymethyl-
methacrylate �PMMA� ridge thickness and width are t=w
=600 nm. Figure 2 represents the waveguide modes disper-
sion around telecom wavelength. Below �=1.23�1015 s−1

�
=1.53 �m�, the waveguide is monomodal. Apart for ky
=0, one cannot separate transverse electric �TE� and trans-
verse magnetic �TM� polarization in partial DOSs.12,20 How-
ever, z-DOS is clearly preponderant �Fig. 2�d��, indicating
that TM polarization is concerned. The dispersion relation of
this fundamental TM00 mode is in good agreement with the
Fig. 1c of Ref. 4. The first-excited mode also appears in Fig.
2�a�. It is the TE00 mode as confirmed using the differential
method and noticing the main contribution of the x-DOS
�Fig. 2�b��.

In the following, we fix the wavelength to 
=1.55 �m.
The guided SPP mode �TM00� propagation constant is ky0

=5.23 �m−1 at 
=1.55 �m. The DOS variation, presented
on Fig. 3, perfectly matches a lorentzian profile as expected
from Eq. �8�. The curve FWHM �ky =0.023 �m−1 corre-
sponds to a propagation length LSPP=1 /�ky =43 �m. We
also calculate the DOS variation versus � at fixed ky
=5.23 �m−1 �not shown� and obtain a lorentzian profile with
a FWHM ��=3.96�1012 s−1 giving a mode lifetime 	
=1 /
=252 fs.16 Group velocity satisfies vg=LSPP /	=0.57c,
in good agreement with the dispersion slope in Fig. 2.

2. Mode effective index at telecom wavelength

In the following, we work at fixed frequency so that Eq.
�8� is rewritten,

���ky ;�� �
g

�k0

n�

�ky/k0 − nef f�2 + n�2 , with n� = ��ky/2k0�

�13�

where nef f =ky0 /k0 is the mode effective index. n� is defined
so that the mode complex effective index is written as ñeff
=nef f + in�. The mode propagation length is then LSPP
=
 /4�n�. Since an image recorded in the Fourier plane by
leakage radiation microscopy is easily calibrated in effective
indices, it is advantageously compared with expression
�13�.23,25 Specifically, it presents the same Lorentzian profile
�apart from amplitude�.5

Figure 4�a� represents the partial DOSs variations. A reso-
nance clearly appears at ky /k0=1.291. As indicated previ-
ously, the z-DOS is clearly preponderant near the resonance
since the mode is TM polarized. There is also a non-
negligible y-DOS contribution as expected for a longitudinal
plasmon mode. We deduce the mode effective index nef f
=1.291 and propagation length LSPP=
 / �4�n��=43.2 �m
�n�=2.85�10−3�, in agreement with previous studies.3,7,21

The guided mode is also characterized considering a TM
polarized 2D Gaussian excitation. The mode intensity decay-
ing in the near-field of the waveguide clearly appears in Fig.
4�b�. An exponential fit gives LSPP

2D =44.4 �m. Note that the
difference between the propagation lengths deduced from
DOS FWHM and from Gaussian beam propagation origi-
nates from three-dimensional �3D� and 2D mode shapes.21

Importantly, the exact 3D mode characteristics associated

FIG. 2. �Color online� �a� DOS variations calculated for a DL-
SPPW. The white lines indicate the fundamental mode propagation
constant at telecom wavelength 
=1.55�m. The dispersion curve
slope gives a group velocity vg /c=0.6 at this wavelength. This
mode is extensively studied in the following. Panels �b�, �c�, and �d�
show the x-, y-, and z-DOS contributions to the total DOS variation,
respectively �note the different scales�. The structure is made of a
600 nm�600 nm PMMA strip deposited on a 100 nm gold film.
Dielectric constants are taken from Ref. 24.

FIG. 3. �Color online� Cross section of dispersion relation �Fig.
2� at given frequency �corresponding to 
=1.55 �m�. Fit curve is a
lorentzian fit �Eq. �8�� with parameters indicated on the figure.
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with the 2D waveguide are obtained through DOS shape.
The mode pattern, calculated in Fig. 4�c�, demonstrates the
good confinement.23 Finally, the mode intensity at a given
time is shown in Fig. 4�d�. The collective charge oscillation,
mode enhancement, and confinement at the metal/dielectric
interface typical from a surface-plasmon mode are visible.
The plasmon mode wavelength 
SPP=1.202 �m=
 /nef f is
again consistent with nef f =1.29.

B. Coupling strength

In order to demonstrate the versatility and efficiency of
DOS formulation as a mode solver, we now investigate cou-
pling strength between two identical waveguides. The DOS
variation for two DLSPPWs separated by 500 nm �edge to
edge� is presented in Fig. 5�a�. Comparing DOS amplitudes
in Figs. 5�a� and 3, it appears that no new mode is created
but modes coupling breaks the degeneracy as expected. Due
to the coupling between the two isolated waveguide modes, a
symmetric and antisymmetric supermodes appear at effective
index neff

s =1.309 and neff
a =1.269, respectively. These two

modes present identical propagation length LSPP
s =LSPP

a

= �
 /4�n��=41.4 �m, slightly below the isolated wave-
guide mode propagation length since some additional leak-
ages occur during energy transfer to the nearby waveguide.
Finally, the coupling length between the two waveguides
obeys

LC =



2�neff
s − neff

a �
. �14�

We obtain LC=19.2 �m for d=500 nm. We again compare
this result with the direct calculation considering excitation

of one of the two guides. The electric intensity shown on Fig.
5�b� presents typical oscillation due to energy transfer from
one guide to the other. The coupling length is in excellent
agreement with the number obtained previously. Figure 5�b�
represents the supermodes effective indices as a function of
guide separation distance. Finally, the evanescent coupling
between the two waveguides, follows an exponential law
with a lateral wave-vector component kx=1 /290 nm−1 �Fig.
5�c��, in good agreement with finite element study done in
Ref. 21, and indicating a strong field confinement near the
guide.

We would like to draw a temporary conclusion here. The
DOS computation in presence of a complex wave-guiding
structure allows direct and complete characterization of the
supported mode: propagation constant and length, as well as
polarization state. In addition coupling between two
waveguides is also easily described.

IV. BOUND MODES

In this last section, we apply the DOS method to bound
�lossy� modes. The modes investigated above have effective
indices below the substrate optical index so that they radia-
tively leak into the substrate. In order to improve the mode
confinement, we now investigate bound modes in DLSPPW.
They are characterized by effective indices higher than sub-
strate and superstrate �air� optical indices and can be ob-
tained with high index dielectric materials. In this section,
we consider a dielectric strip of optical index n=2.437 that
corresponds for instance to chalcogenide glasses26 or BM4i4i
polymer, two materials that present strong nonlinear proper-
ties promising for all-optical integrated photonic.6
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FIG. 4. �Color online� Single waveguide characterization. �a� Partial DOSs calculated as a function of ky /k0. x-DOS is magnified 50� to
be visible. �b� �Time-averaged� electric intensity calculated 50 nm above the dielectric ridge when the system is excited by a �2D-� Gaussian
beam by total internal reflection from the substrate centered at incident angle arcsin�nef f /nsub�=53.8°. The blue curve is an exponential fit
with decay length LSPP

2D =44.4 �m. �c� Mode intensity pattern E2D�r	�. �d� Electric field intensity computed at a certain time, far from the
incident excitation spot �see Fig. 4�b��, revealing the mode propagation. The white arrows indicate the electric field orientation. “−−” and
“++” represent the charges density signs at the metal surface, deduced from the field polarization. The dielectric ridge �ndiel=1.535� is t
=600 nm thick and w=600 nm width. The gold film and glass substrate optical indices are nmetal=0.55+ i11.5 and nsub=1.6, respectively.
Incident vacuum wavelength is 
=1.55 �m. Electric intensity is normalized with respect to the incident intensity at the focal point �y
=0,z=0�.
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Using effective index model, we first roughly determine
the strip thickness and width that optimize the mode confine-
ment and ensure monomodal conditions.3,23 We found that a
strip with square section of 300 nm side allows for a good
mode confinement, and supports a single mode �TM00�. We
deduce from DOS variation �Fig. 6�a�� the mode effective

index �nef f =1.773� and propagation length �LSPP=9.8 �m�.
The mode profile, represented in Fig. 6�b� is similar to
PMMA leaky mode �Fig. 4�c��. However, although being a
bound mode �effective index higher than the substrate in-
dex�, this mode has a very low propagation length compared
to the leaky PMMA mode. This is due to the high dielectric
index that pushes the mode field into the lossy metal. This
can be clearly seen considering thin gold films. Figure 7
represents the mode profile for leaky and bound modes for
two gold thicknesses. As the gold film thickness decreases,
radiatives losses of the leaky modes into the substrate in-
crease so that the PMMA-DLSPPW mode propagation
length drops to LSPP=1.5 �m for 10 nm gold film �Fig.
7�b��. In case of bound mode, no radiative loss is observed
�Fig. 7�d�� but due to the high mode effective index, strong
mode penetration into the lossy gold film is visible so that
rather low propagation length �LSPP=1.4 �m� is also ob-
tained.

Finally, this study shows that one has to avoid high index
materials for DLSPPW application, in contrast to standard
dielectric integrated waveguides.27 Figure 8�a� also compares
effective indices obtained using approximated effective in-
dex model3 and two exact numerical methods, namely, the
differential method and the DOS variations. Numerical meth-
ods are in excellent agreement for leaky modes. Bound
modes cannot be easily investigated by the differential
method since it generally relies on mode excitation through
the substrate,7 but they are accessible using DOS formula-
tion. The agreement is within 10% as far as propagation
length is concerned �Fig. 8�b��.

FIG. 5. �Color online� Coupled DLSPPWs. �a� DOS difference
computed for two guides separated by d=500 nm �edge to edge�.
�b� Electric intensity calculated 50 nm above the DLSPPWs when
the top waveguide is excited with a �spatially truncated� 2D-
Gaussian beam at incident angle 53.8°. �c� Coupled waveguides
DOS as a function of separation distance. �d� Coupling length for
several separation distance deduced from DOS variations �“DOS”�
or effective index model �“EIM”�. The dotted line is an exponential
fit with a slope kx=1 /290 nm−1.

FIG. 6. �Color online� �a� DOS variation for a high index �n
=2.437� strip above a 50 nm gold film. �b� Mode intensity profile in
the �XZ� plane.
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V. CONCLUSION

In conclusion, the evaluation of density of modes modifi-
cation in presence of a photonic wave-guiding structure al-
lows direct estimation of both mode effective index and
propagation length for either leaky and bound modes. More-
over, a close inspection of partial DOSs, which build up the
density of modes, directly reveals the mode polarization
state. Finally, it is worthwhile noting that although we inves-
tigated a specific configuration, namely, DLSPPW, this
method is general and is available for any 2D guiding struc-
ture. Last, we would like to mention that this method intrin-
sically concerns lossy modes. In case of absolutely no loss
�neither by leakage, absorption, nor corners scattering�, it
could be applied by artificially adding an extremely small
absorption to the waveguide.
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